• Users Online: 132
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
REVIEW ARTICLE
Year : 2015  |  Volume : 27  |  Issue : 1  |  Page : 1-7

Extracellular vesicles: fundamentals and clinical relevance


1 Department of Nephrology, Sahel Teaching Hospital, General Organization of Teaching Hospitals and Institutes (GOTHI); Department of Nephrology, Kidney Transplantation Unit, October Six University Hospitals, Cairo, Egypt
2 Department of Clinical Pathology, Stem Cell Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
3 Department of Nephrology, Kidney Transplantation Unit, October Six University Hospitals, Cairo, Egypt
4 Department of Pediatric Nephrology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt

Correspondence Address:
Wael Nassar
Hegaz Nephrology Center, 20 Tahreer St; Dokki,11511, Giza
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1110-7782.155824

Rights and Permissions

All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as 'garbage bags' only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs) to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we'll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1500    
    Printed39    
    Emailed0    
    PDF Downloaded234    
    Comments [Add]    
    Cited by others 1    

Recommend this journal