• Users Online: 88
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 30  |  Issue : 4  |  Page : 284-288

Study of hepcidin level in patients with chronic kidney disease and its correlation with markers of iron status in Zagazig University Hospital


1 Department of Internal Medicine, Faculty of Medicine, Zagazig University Hospital, Zagazig, Egypt
2 Department of Clinical Pathology, Faculty of Medicine, Zagazig University Hospital, Zagazig, Egypt

Date of Submission07-May-2018
Date of Acceptance30-Jul-2018
Date of Web Publication14-Jan-2019

Correspondence Address:
Nafesa M Kamal
Elharam, Geza, 12559
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ejim.ejim_31_18

Rights and Permissions
  Abstract 

Context Chronic kidney disease (CKD) including hemodialysis (HD) is considered an inflammatory state leading to hepcidin upregulation, which affects iron homeostasis.
Aims The aim was to assess the serum level of hepcidin in CKD including HD patients and its correlation with markers of iron status.
Settings and design The study was conducted in Zagazig University hospital.
Participants and methods A prospective, case–control, comparative study was conducted on 66 participants, who were divided into control group, comprising 22 healthy participants; HD group, comprising 22 patients; and CKD group, comprising 22 patients from stages 2 to 4. All participants were evaluated for serum creatinine, complete blood count, estimated glomerular filtration rate by MDRD4 equation, serum iron, total iron-binding capacity, serum ferritin, transferrin saturation, C-reactive protein, and serum hepcidin level.
Statistical analysis The study was analyzed using SPSS version 20. Description of the qualitative variables was done by frequency and percentage. Description of the quantitative variables was in the form of mean and SD. χ2-Test, Student’s t-test, analysis of variance (F-test), and correlation analysis were used for analyzing the data.
Results Serum level of hepcidin was increase by increase stages of CKD, and more increase in regular HD patients. There was high statistically significant positive correlation of hepcidin level with serum ferritin (P<0.001), serum iron (P<0.05) in CKD and negative correlation with Hb, eGFR (P<0.001), and it was not correlated with total iron binding capacity (TIBC) (P<0.48).
Conclusion Serum hepcidin levels are a good biomarker for iron status in patients with HD and CKD. In addition, determination of hepcidin together with markers associated with iron metabolism improves the identification of patients with iron deficiency.

Keywords: chronic kidney disease, Egypt, Zagazig University, hemodialysis, hepcidin


How to cite this article:
Kamal NM, Diab M, Khalil RA. Study of hepcidin level in patients with chronic kidney disease and its correlation with markers of iron status in Zagazig University Hospital. Egypt J Intern Med 2018;30:284-8

How to cite this URL:
Kamal NM, Diab M, Khalil RA. Study of hepcidin level in patients with chronic kidney disease and its correlation with markers of iron status in Zagazig University Hospital. Egypt J Intern Med [serial online] 2018 [cited 2019 Feb 22];30:284-8. Available from: http://www.esim.eg.net/text.asp?2018/30/4/284/249959




  Introduction Top


Anemia is a major complication of patients with chronic kidney disease (CKD) and those with ESRD [1]. Hepcidin, an acute-phase reactant protein produced in the liver, controls the plasma iron concentration by inhibiting iron export by ferroportin from enterocytes and macrophages. Serum hepcidine level was discovered to be increased in those patient as it considered an inflammatory state [2]. Hepcidin leads to erythropoietin (EPO) resistance by regulating iron-restricted erythropoiesis, erythroid progenitor proliferation, and survival [3]. Increased hepcidin across the spectrum of CKD may contribute to abnormal iron regulation and erythropoiesis [4].


  Participants and methods Top


A prospective, case-control comparative study was conducted on adult patients, who were randomly selected from the Nephrology and Dialysis Unit of Zagazig University hospital, Egypt, from June 2015 to June 2016. This study was conducted on 66 participants who were divided into control group (group I), comprising 22 healthy participant (16 males and six females); hemodialysis (HD) group (group II), comprising 22 patients with mean±SD age of 54.7±6.1 years; and CKD group (group III), comprising 22 patients with CKD with mean±SD age of 51.5±7.4 years. Inclusion criteria were age equal to or more than 18 years. Exclusion criteria included age less than 18 years, patients refusing to participate in the study, patients on immune suppressive therapy, patients with chronic liver disease, patients who had any connective tissue disorders, those with evidence of current infection or inflammation (other than renal cause), patients with malignancy, and pregnant women. An oral consent from the participants and clearance from the institution’s ethics committee were obtained for the study.

All persons included in this study were subjected to the following at the time of the study: complete clinical history, physical examination, and laboratory investigation like complete blood count, serum creatinine, serum iron, total iron-binding capacity, serum ferritin, transferrin saturation, C-reactive protein, estimated glomerular filtration rate (eGFR) calculated by the MDRD4 equation, and serum hepcidin level.

Dialysis unit nursing staff performed all blood sample withdrawals on the day of dialysis session for all patients on HD before the intervention and other participants when they were fasting.

Data management

The collected data were revised, verified, and edited on a personal computer, and then analysed statistical using statistical package for the social science (SPSS) for windows, version 20 (SPSS Inc., Chicago, Illinois, USA).

The following statistical tests were used: description of qualitative variables was done by frequency and percentage, and description of quantitative variables was in the form of mean and SD. χ2-test and Fisher’s exact test were used for comparison of qualitative variables with each other. Comparison between quantitative variables was carried out using Student’s t-test of two independent samples. For comparison of more than two quantitative groups, analysis of variance F-test was used for categorical data. Significance level (P) was expressed as follows: P value greater than 0.05 is not significant, P value less than 0.05 is significant, and P value less than 0.001 is highly significant. Pearson’s correlation coefficient was used to calculate the correlation between quantitative variables. Spearman’s coefficient was calculated to determine the relationships between serum hepcidin levels and study variables.


  Results Top


[Table 1] showed that there were statistically significant differences between different groups regarding age, whereas there were no statistically significant differences regarding sex.
Table 1 Demographic data of different groups

Click here to view


[Table 2] showed that there was a highly significant statistical difference among different groups regarding serum level of Hb, serum iron, total iron binding capacity (TIBC), transferrin, serum ferritin, eGFR, and serum hepcidin.
Table 2 Serum hepcidin and laboratory data of the studied groups

Click here to view


[Table 3] and [Table 4] showed a highly significant statistical difference among different groups regarding eGFR, Hb, serum ferritin, and serum hepcidin.
Table 3 Serum hepcidin and convention markers of iron status between the stages of chronic kidney disease in the chronic kidney disease group

Click here to view
Table 4 Correlation of hepcidin with the measured parameters in chronic kidney disease and hemodialysis groups

Click here to view



  Discussion Top


Normochromic normocytic anemia usually accompanies progressive CKD, with reported prevalence of 47.7% among predialysis patients [5]. Anemia is a major and common complication of CKD that contributes to its progression, cardiovascular events, and high morbidity and mortality in patients with CKD. Renal anemia is considered a special form of anemia of inflammation [6].

Hepcidin levels are regulated by iron status and erythropoietic activity, hepcidin levels are reduced by anemia and hypoxia and increased by inflammation and intake of food rich in iron without overload [7]. Suppression of hepcidin appears to occur possibly due to the increase of erythropoiesis in response to anemia, which is characteristic of the disease and, consequently, could lead to increased intestinal absorption of iron [8].

The present study revealed that serum hepcidin level was significantly higher in HD group than in CKD groups and control group (P<0.001), and also hepcidin was higher in CKD group than control group. Regarding CKD group, there was a significant increase in serum hepcidin level in stage 4 than stage 3, which was higher than stage 2 (P<0.001).

Our study agrees with the study of Peters et al. [9] who exhibited significantly higher hepcidin-25 levels in patients on HD than patients with CKD, and serum hepcidin levels were decreased slightly during HD. This is owing to contracted levels and underestimation of hepcidin-25 cleanness.

Our finding is consistent with prior studies, which found elevated levels of hepcidin among patients with ESRN [10]. In addition, hepcidin levels were approximately two–three-fold higher in patients with ESRD than in the control group [11]. This was because of limited hepcidin excretion in urine, tissue iron overload, and inflammation [12].

This study revealed that there is a negative correlation between serum hepcidin level and the eGFR in CKD group, whereas this correlation is lost in HD group because the kidney function is completely lost in patients on HD. This result is in agreement with Zaritsky et al. [4], who reported that total serum hepcidin (sum of all isoforms 25, 22, 20, and 31) measured with an enzyme-linked immunosorbent assay was inversely associated with eGFR. This is because hepcidin is excreted in urine and metabolized by the kidney [11]. The impairment of one or both processes may cause hepcidin accumulation as GFR decreases. It remains possible that the inverse relationship of GFR and hepcidin reflects the known association of CKD and inflammation.

We found decreased levels of serum iron, TIBC, and transferrin saturation (TSAT). However, serum ferritin levels were found to be elevated in patients with CKD and HD compared with the control group. High ferritin levels may be observed in this disease owing to functional iron deficiency and reticule-endothelial blockade.

This commonly seen paradox of high serum ferritin and low TSAT has made it desirable to look for a substitute iron marker to predict the better iron status of the patient [13]. Various other studies also support that current markers of iron metabolism like TSAT and ferritin do not predict iron status effectively [14], and these conventional markers have certain limitations [15]. The diagnosis of iron deficiency using these markers is unproductive as it can be affected by variables such as age, sex, inflammation, and nutritional factors. In another study, it was concluded that determination of hepcidin concentration together with conventional markers that are associated with iron metabolism improved the identification of patients with iron deficiency by 26.1% [16].

Our finding revealed a positive correlation between serum hepcidin and serum ferritin level, but there was no correlation between serum hepcidin and serum iron in HD group. Our results were in concordance with Peters et al. [9], who reported that after studying of serum hepcidin-25 levels independent of eGFR in 83 patients with CKD not requiring dialysis and in 48 HD patients, serum hepcidin 25 levels were strongly positively correlated with ferritin levels in patients with CKD and HD. In addition, we found there was a negative correlation between serum hepcidin and eGFR, and this was because of inflammation and impaired renal clearance. This was in agreement with Atkinson et al. [17] who reported that hepcidin levels correlated negatively with GFR and positively with serum ferritin.The present study showed that serum hepcidin levels have the same sensitivity of serum ferritin, and both have greater sensitivity than transferrin saturation; however, hepcidin specificity was the least in comparison with serum ferritin and TSAt whereas transferrin saturation has the greatest.

Our result showed that there is a negative correlation between serum hepcidin and hemoglobin in patients with HD and CKD as hepcidin levels increased as CKD progressed through stage 3–5. This is similar to Goyal et al. [18] who stated hepcidin correlated negatively with Hb in patients with CKD with normal iron status.

In conclusion, serum hepcidin levels are a good biomarker for iron status in patients with HD and CKD. In addition, determination of hepcidin together with markers associated with iron metabolism improves the identification of patients with iron deficiency.

Acknowledgements

The authors would like to appreciate the great help of Dr Khairy Nabil.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Tsubakihara Y, Nishi S, Akiba T, Hirakata H, Iseki K, Kubota M et al. 2008 Japanese Society for Dialysis Therapy: guidelines for renal anemia in chronic kidney disease. Ther Apher Dial 2010; 14:240–275.  Back to cited text no. 1
    
2.
Uehata T, Tomosugi N, Shoji T, Sakaguchi Y, Suzuki A, Kaneko T et al. Serum hepcidin-25 levels and anemia in non-dialysis chronic kidney disease patients: a cross-sectional study. Nephrol Dial Transplant 2012; 27:1076–1083.  Back to cited text no. 2
    
3.
Ford BA, Eby CS, Scott MG, Coyne DW. Intra-individual variability in serum hepcidin precludes its use as a marker of iron status in hemodialysis patients. Kidney Int 2010; 78:769–773.  Back to cited text no. 3
    
4.
Zaritsky J, Young B, Wang HJ, Westerman M, Olbina G, Nemeth E et al. Hepcidin − a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol 2009; 4:1051–1056.  Back to cited text no. 4
    
5.
Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complications. Prim Care 2008; 35:329–344.  Back to cited text no. 5
    
6.
Zarychanski R, Houston DS. Anaemia of chronic disease: a harmful disorder or an adaptive, beneficial response?. CMAJ 2008; 179:333–337.  Back to cited text no. 6
    
7.
Sanad M, Gharib AF. Urinary hepcidin level as an early predictor of iron deficiency in children: a case control study. Ital J Pediatr 2011; 37:37.  Back to cited text no. 7
    
8.
Omena J, Cople-Rodrigues DSC, Dias do A, Cardoso MJ, Sares RA, Fleury KM et al. Serum hepcidin concentration in individuals with sickle cell anemia: basis for the dietary recommendation of iron. Nutrients 2018; 10:498.  Back to cited text no. 8
    
9.
Peters HP, Laarakkers CM, Swinkels DW, Wetzels JF. Serum hepcidin-25 levels in patients with chronic kidney disease are independent of glomerular filtration rate. Nephrol Dial Transplant 2009; 25:848–853.  Back to cited text no. 9
    
10.
Jairam A, Das R, Aggarwal PK, Kohli HS, Gupta KL, Sakhuja V et al. Iron status, inflammation and hepcidin in ESRD patients: The confounding role of intravenous iron therapy. Indian J Nephrol 2010; 20:125.  Back to cited text no. 10
[PUBMED]  [Full text]  
11.
Swinkels DW, Wetzels JF. Hepcidin: a new tool in the management of anaemia in patients with chronic kidney disease? Nephrol Dial Transplant 2008; 23:2450–2453.  Back to cited text no. 11
    
12.
Xu Y, Ding XQ, Zou JZ, Liu ZH, Jiang SH, Chen YM. Serum hepcidin in haemodialysis patients: associations with iron status and microinflammation. J Int Med Res 2011; 39:1961–1967.  Back to cited text no. 12
    
13.
Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin J Am Soc Nephrol 2006; 1(Suppl 1):S4–S8.  Back to cited text no. 13
    
14.
Singh B, Arora S, Agrawal P, Gupta SK. Hepcidin: a novel peptide hormone regulating iron metabolism. Clinica Chimica Acta 2011; 412:823–830.  Back to cited text no. 14
    
15.
Pasricha SR, McQuilten Z, Westerman M, Keller A, Nemeth E, Ganz T et al. Serum hepcidin as a diagnostic test of iron deficiency in premenopausal female blood donors. Haematologica 2011; 96:1099–1105.  Back to cited text no. 15
    
16.
Sancho A, Pastor MC, Troya M, Bonal J, Bayés B, Morales-Indiano C et al. Hepcidin and iron deficiency in pre-kidney transplant patients. Transplant Proc 2009; 41:2079–2081.  Back to cited text no. 16
    
17.
Atkinson MA, Kim JY, Roy CN, Warady BA, White CT, Furth SL. Hepcidin and risk of anaemia in CKD: a cross-sectional and longitudinal analysis in the CKiD cohort. Pediatr Nephrol 2015; 30:635–643.  Back to cited text no. 17
    
18.
Goyal H, Mohanty S, Sharma M, Rani A. Study of anaemia in nondialysis dependent chronic kidney disease with special reference to serum hepcidin. Indian J Nephrol 2017; 27:44.  Back to cited text no. 18
[PUBMED]  [Full text]  



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Participants and...
Results
Discussion
References
Article Tables

 Article Access Statistics
    Viewed111    
    Printed2    
    Emailed0    
    PDF Downloaded31    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]